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Abstract

Data-free knowledge distillation (DFKD) aims to distill pre-
trained knowledge to a student model with the help of a gen-
erator without using original data. In such data-free scenarios,
achieving stable performance of DFKD is essential due to the
unavailability of validation data. Unfortunately, this paper has
discovered that existing DFKD methods are quite sensitive to
different teacher models, occasionally showing catastrophic
failures of distillation, even when using well-trained teacher
models. Our observation is that the generator in DFKD is
not always guaranteed to produce precise yet diverse sam-
ples using the existing representative strategy of minimiz-
ing both class-prior and adversarial losses. Through our em-
pirical study, we focus on the fact that class-prior not only
decreases the diversity of generated samples, but also can-
not completely address the problem of generating unexpect-
edly low-quality samples depending on teacher models. In
this paper, we propose the teacher-agnostic data-free knowl-
edge distillation (TA-DFKD) method, with the goal of more
robust and stable performance regardless of teacher models.
Our basic idea is to assign the teacher model a lenient expert
role for evaluating samples, rather than a strict supervisor that
enforces its class-prior on the generator. Specifically, we de-
sign a sample selection approach that takes only clean sam-
ples verified by the teacher model without imposing restric-
tions on the power of generating diverse samples. Through
extensive experiments, we show that our method successfully
achieves both robustness and training stability across vari-
ous teacher models, while outperforming the existing DFKD
methods.

Introduction
Knowledge distillation (KD) (Hinton, Vinyals, and Dean
2015) is a powerful compression technique that transfers the
knowledge of a pretrained teacher model to a smaller student
model. Typically, KD methods require data samples that are
used to train the teacher model, in order to properly guide the
training of the student model. However, in real-world scenar-
ios, it is neither always possible nor desirable to assume the
availability of training data. To address such practical issues,
data-free knowledge distillation (DFKD) has been actively
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Figure 1: (a) Training curves of student models during dis-
tillation of two different well-trained teacher models on
MNIST when using one or both of class-prior (DAFL) and
adversarial learning (DFAD) losses. (b) Peak accuracies of
student models distilled from five different teacher models
on CIFAR10 when using different DFKD methods includ-
ing our TA-DFKD method

studied (Yoo et al. 2019; Nayak et al. 2019), aiming to dis-
till pretrained knowledge through the assistance of a gener-
ator, without the use of original data samples. The generator
is also trained based on the teacher model to generate syn-
thetic samples, which are intended to be replacements of the
original samples in the distillation process.
A key challenge in DFKD arises from the unavailability of

validation data, making it impossible to accurately evaluate
the effectiveness of distillation. Therefore, it is crucial for
DFKD methods to ensure the stable and robust performance
no matter which teacher models are distilled. To this end, the
state-of-the-art (SOTA) DFKD methods incorporate the fol-
lowing three components into their training loss function for
the generator: class-prior, adversarial, and representation
losses. Class-prior, initially introduced by DAFL (Chen et al.
2019), aims to generate accurate samples that can be classi-
fied by the teacher model into a specific class. On the other
hand, the adversarial loss, first proposed by DFAD (Fang
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et al. 2019) and ZSKT (Micaelli and Storkey 2019), intends
to generate hard samples that maximize the output discrep-
ancy between the teacher and student models, thereby en-
hancing the diversity of generated samples. Lastly, the repre-
sentation loss focuses on learning feature-level information
of real data with respect to the teacher model.
Unfortunately, this paper has discovered that existing

DFKD methods are quite sensitive to different teacher mod-
els, occasionally showing catastrophic failures of distilla-
tion, even when using well-trained teacher models with high
performance. As shown in Figure 1(a), we first focus on how
two representative techniques, such as enforcing class-prior
(e.g., DAFL) and minimizing adversarial loss (e.g., DFAD),
can sometimes fail in distillation from two different teacher
models on MNIST with the same level of accuracy achieved
by the same training method. Although Teacher 2 is slightly
better in accuracy than Teacher 1, both DAFL and DFAD
completely fail to distill the knowledge of Teacher 2, result-
ing in a large performance gap from their successful coun-
terparts using Teacher 1. Although more and more recent
proposals combine both class-prior and adversarial losses,
such a mixed approach may not be a successful solution ei-
ther, as shown by the failure of DAFL + DFAD in distilling
Teacher 2 in Figure 1(a). Note that there is no difference in
training strategies between Teacher 1 and Teacher 2.
In our findings, this teacher-sensitive failure in DFKD oc-

curs mainly due to a misguided generator that does not al-
ways produce precise yet diverse samples when employing
the above two strategies, namely minimizing class-prior and
adversarial losses. First of all, class-prior such as in DAFL
is intended to improve the sample quality, but it also tends
to guide the generator to focus on only easy samples. As
a result, the student model can learn only a small fraction
of the teacher’s knowledge. In extreme cases, the resulting
student model can misclassify every sample into a particu-
lar class, which is why the model distilled from Teacher 2
by DAFL keeps 0.1 accuracy (i.e., out of 10 digits) in Fig-
ure 1(a). On the other hand, the adversarial loss for the gen-
erator used in DAFD is effective to generate harder samples,
which are possibly more diverse as well, but can lead to un-
realistic samples that are not relevant to any of the classes
of the teacher model. In order to achieve both high qual-
ity and diversity of synthetic samples, the recent works like
(Fang et al. 2021; Yin et al. 2020; Binici et al. 2022a,b; Li
et al. 2023) combine both techniques. However, depending
on teacher models, we find that they are not guaranteed to
find a sweet spot between two conflicting losses, one for pre-
cision and the other for diversity, and consequently suffer
from the generation of unexpectedly low-quality samples.
As demonstrated in Figure 1(b), none of the SOTA DFKD
methods show a satisfactory level of robustness across 5 dif-
ferent pretrained models on CIFAR-10.
In this paper, we revisit the necessity of class-prior, which

has been believed crucial by most SOTA methods, and fo-
cus on its drawback, namely enforcing the teacher’s strict
restriction to the generator. In our analysis, we find that a
generator can freely generate more diverse samples when it
is trained without class-prior. Moreover, despite the attempts
of class-prior to enhance the sample quality, our observation

DAFL DFAD ADI CMI PRE-DFKD TA-DFKD

Cls. X X X X
Adv. X X X X X

Rep. X X X X X
activ. BNS BNS activ. BNS

Table 1: Summary of the existing DFKD methods,
DAFL (Chen et al. 2019), DFAD (Fang et al. 2019),
ADI (Yin et al. 2020), CMI (Fang et al. 2021), PRE-
DFKD (Binici et al. 2022a) and TA-DFKD (ours), in terms
of using three major components, class-prior, adversarial,
and representation losses.

reveals that relying only on the class-prior loss still allows
the generator to produce low-quality samples, even without
the adversarial loss.
Based on these observations, we propose the teacher-

agnostic data-free knowledge distillation (TA-DFKD)
method that assigns the teacher model a lenient expert role,
namely removing the class-prior restriction for the genera-
tor to explore larger area in the sample space for achieving
higher diversity. At the same time, in pursuit of high pre-
cision of synthetic samples, TA-DFKD utilizes the teacher
model as an expert who can evaluate the quality of syn-
thetic samples, thereby discards unexpectedly low-quality
samples. Inspired by the existing works (Song et al. 2020)
on learning from noisy labels, we design a sample selection
method that takes only generated samples whose labels are
confirmed to be sufficiently precise by the teacher model,
using the Gaussian Mixture Model.
As observed in Figure 1(b), our TA-DFKD method

demonstrates a highest level of teacher-agnostic robustness
by consistently achieving the best accuracy close to those of
teacher models. This trend is also observed in our extensive
experimental results, where TA-DFKD manages to achieve
both the robustness across various teacher models and sta-
bility at converging time of the distillation process, outper-
forming the existing DFKD methods.

Related Works
Data-Free Knowledge Distillation In data-free knowl-
edge distillation (DFKD), given only a pretrained teacher
model without any real or meta data, our focus is on how
to generate synthetic samples that can be used to effectively
transfer the teacher’s knowledge to a target student model.
There are two initial strategies to this end, optimizing ran-
dom noisy images themselves (Nayak et al. 2019) or em-
ploying a generator extracted from a pretrained model (Yoo
et al. 2019; Chen et al. 2019). Since the former is more com-
putationally expensive (Nayak et al. 2019; Yin et al. 2020),
recent studies have primarily focused on the latter approach,
where the main issue is to train the generator only using the
teacher model. Except for KegNet (Yoo et al. 2019), most
DFKD methods (Chen et al. 2019; Fang et al. 2019; Mi-
caelli and Storkey 2019; Binici et al. 2022b,a; Do et al. 2022;
Li et al. 2023) adopt a one-phase distillation scheme such
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that the generator and the student are simultaneously trained
from scratch, while freezing the teacher network. This en-
ables a progressive transfer of the teacher’s knowledge us-
ing the generator being trained. To generate more effective
samples, three types of loss terms are mainly leveraged for
training the generator: class-prior, adversarial, and repre-
sentation losses, as described in the previous section. Ta-
ble 1 provides a summary of which losses are employed in
existing DFKD methods.
DAFL (Chen et al. 2019) first exploits class-prior that

enforces the generator to produce samples that are precise
enough to be well predicted by the teacher. It also proposes
a representation loss, referred to as activation, which aims
to maximize activation values of the feature maps. Another
representation loss, introduced in ADI (Yin et al. 2020) and
called BNS, constrains the statistics of batch normalization
layers stored in the teacher model. DFAD (Fang et al. 2019)
and ZSKT (Micaelli and Storkey 2019) adopt an adversarial
learning strategy inspired by GAN (Goodfellow et al. 2014),
aiming to generate more challenging samples that maxi-
mize disagreement between the teacher and student models.
This approach encourages the student model to learn diverse
knowledge from the teacher model, but may lead to unreal-
istic samples that belongs to none of teacher’s categories.
Consequently, recent studies have attempted to combine

class-prior, adversarial and representation losses, aiming of
generating precise and diverse samples, while proposing
their additional techniques to further enhance performance.
CMI (Fang et al. 2021) suggests using contrastive learning
to increase the diversity of generated samples. CuDFKD (Li
et al. 2023) and AdaDFQ (Qian et al. 2023) propose adaptive
learning so that the student model can progressively learn
the teacher’s knowledge, and ABD (Hong et al. 2023) deals
with a scenario with untrustworthy teacher models. Further-
more, MB/PRE-DFKD (Binici et al. 2022b,a) pay attention
to undesirable forgetting in the student model caused by ad-
versarial learning, as seen in the training curve of DFAD
with Teacher 1 in Figure 1(a). To prevent this forgetting phe-
nomenon, MB/PRE-DFKD (Binici et al. 2022b,a) propose
the use of a memory bank or an extra generative model.
With the same goal, MAD (Do et al. 2022) suggests em-
ploying exponential moving average for generator updates,
while META-DFKD (Patel, Mopuri, and Qiu 2023) incorpo-
rates meta-learning into the generator training process. De-
spite some synergy effects observed in these DFKD meth-
ods that combine the three losses, none of them achieve a
satisfactory level of robustness and stability across different
teacher models, as revealed in our experimental results.

Learning from Noisy Labels Unlike popular benchmark
datasets assuming always correct labels in deep neural net-
works (DNNs), data labeling in practice can be highly prone
to errors, leading to noisy labels. To address this issue, there
has been a branch of works, called learning from noisy la-
bels (LNL) (Song et al. 2020), which focuses on preventing
a DNN from overfitting to data with noisy labels. A repre-
sentative approach is sample selection that identifies clean
samples by modeling the difference between clean ones and
those with noisy labels. A simple policy can be taking sam-

ples with smaller loss values. More advanced strategies in-
clude using a pretrained model (Jiang et al. 2018) and train-
ing dual models (Malach and Shalev-Shwartz 2017; Han
et al. 2018; Yu et al. 2019; Li, Socher, and Hoi 2020) to make
a better decision on clean samples. Our method is inspired
by these sample selection strategies in LNL even though the
DFKD problem itself is not directly related to identifying
noisy labels. Specifically, we employ the Gaussian Mixture
Model introduced by DivideMix (Li, Socher, and Hoi 2020),
as it aligns well with our objective of selecting high-quality
samples with respect to the pretrained teacher model.

Methodology
Framework of Generator-Based DFKD
In the standard generator-based DFKD framework, we con-
sider the following three networks: a pretrained teacher
model ✓T , a student model ✓S , and a generator ✓G. The ulti-
mate goal of DFKD is the same as in the normal KD, that is,
transferring the knowledge of the teacher model to the stu-
dent model. Instead of real data, however, DFKD uses the
generator to generate a fake sample x̂ = ✓G(z) with some
random vector z ⇠ pz(z), and feeds these synthetic samples
to ✓T and ✓S for minimizing the following distillation loss:

LKD = Ez⇠pz(z)[D(✓T (✓G(z)), ✓S(✓G(z)))], (1)

where D(·, ·) is the distance between the outputs of two
models and pz(z) is usually N (0, 1). The most challeng-
ing issue here is how to define an effective loss function LG

to train ✓G without using any real data. To this end, most
DFKD methods employ a mixed loss function as follows:

LG = ↵LCls + �LAdv + �LRep, (2)

where LCls is the class-prior loss, LAdv is the adversarial
loss, and LRep is the representation loss. Given LKD and
LG, while freezing ✓T , the final goal of DFKD is to simul-
taneously train ✓S and ✓G with the following objective func-
tions: min

✓S
LKD and min

✓G
LG.

Our Findings. In this work, we argue that the generator
is not always guaranteed to synthesize precise yet diverse
samples for various teacher models, despite minimizing LG

in Eq. (2). In particular, we focus on the catastrophic failure
of DAFL (Chen et al. 2019) in Figure 1(a), which heavily
relies on class-prior and thus reveals the drawbacks of class-
prior when training the generator, namely decreasing sample
diversity yet allowing low-quality samples.

Revisiting Class-Prior in DFKD
With the goal of generating more accurate samples, the
class-prior loss LCls is usually defined as:

LCls = Ez⇠pz(z)[`ce(✓T (✓G(z)), ŷz)],

where ŷz is a one-hot vector corresponding to the class with
the maximum probability in ✓T (✓G(z)) and `ce(·, ·) is the
cross-entropy loss function. Since LCls will continue to in-
cur loss values with some extent until ✓T (✓G(z)) becomes
close to the one-hot vector, the generator ✓G will be more
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Figure 2: FID scores using a pretrained ResNet-34 model on
CIFAR-10 with class-prior’s intensity values from 0 to 1.

(a) With class-prior (b) Without class-prior

Figure 3: Images of Airplane (top) and Dog (bottom) gener-
ated by each trained version of the generator with or without
class-prior for a pretrained ResNet-34 model on CIFAR-10.

and more focused on producing less challenging samples,
rather than exploring various sample cases that might be use-
ful for transferring the teacher’s knowledge. This will po-
tentially reduce the overall diversity of generated samples,
leading to less effective distillation from the teacher. Based
on our intuition, this subsection conducts a detailed exper-
imental analysis on class-prior, considering its necessity in
the generator loss function.

Lower Sample Diversity. To evaluate the impact of class-
prior on the diversity of generated samples, we train the
generator ✓G using a trained ResNet-34 model on CIFAR-
10, while varying the intensity parameter of LCls (i.e., ↵ in
Eq. (2)) and fixing those of LRep and LAdv . To measure the
sample diversity, we compute the Frechet Inception distance
(FID) score over the samples generated by each trained ver-
sion of ✓G, where the FID score (Heusel et al. 2017) is
known to be smaller when evaluating more diverse and real-
istic samples in generative models. Figure 2 shows a roughly
decreasing trend of the FID score when reducing the class-
prior’s intensity, implying that the stronger the class-prior
loss, the lower the diversity of generated samples. In Fig-
ure 3, we also visually demonstrate that a generator trained
with class-prior produces a limited variety of images for Air-
plane and Dog classes, whereas it becomes able to generate
variants of those images when removing class-prior from the
generator loss function. Finally, as shown in Table 2, this
trend turns out to remain the same even when using vari-
ous teacher models of similar performance. With the excep-
tion of T4, where class-prior appears to be effective, the FID
scores without class-prior are mostly smaller (and thus ex-
hibit higher diversity) than those with class-prior.

Incomplete Quality Control. We next investigate how ef-
fectively the class-prior loss controls the quality of gener-
ated samples, by training a generator with class-prior but

Teachers T1 T2 T3 T4 T5
95.5 93.5 92.0 94.4 91.4

↵ = 0 116.3 119.3 106.7 109.7 106.4
↵ = 1 122.7 122.9 111.7 105.1 109.6

Table 2: FID scores using five different ResNet-34 teacher
models on CIFAR-10.
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(a) 2D Visualization of feature vectors

(b) Sample visualization

Figure 4: (a) 2D visualization of feature vectors correspond-
ing to real data and synthetic data generated by a gener-
ator trained using class-prior without the adversarial loss
in ResNet-34 on CIFAR-10, where •, ?, and ⇥ represent
real data samples, high-quality synthetic samples within the
boundary of their corresponding real data, and low-quality
ones out of their boundary. (b) and (c) show a low-quality
synthetic image and its probability distribution, respectively.

removing the adversarial loss LAdv from Eq. (2). This is
because, as pointed out by Fang et al. (2021), adversarial
training seems to be the major component that causes low-
quality samples in DFKD, while class-prior is supposed to
enhance the sample quality. As observed in Figure 4, how-
ever, even such a generator without LAdv often synthesizes
unexpectedly low-quality samples (represented as⇥-shaped
points in Figure 4(a) and visualized in Figure 4(b)) to the
point that the teacher model cannot be confident about their
predicted classes (see Figure 4(c)). Unfortunately, these er-
roneous samples have been consistently observed to account
for approximately 7-8% per batch, and can confuse even
well-trained teacher models, potentially leading to the fail-
ure of the entire distillation process due to their accumu-
lated errors. Therefore, we conclude that the class-prior loss
cannot solely prevent the generation of unexpectedly low-
quality samples.

Proposed Method
Generator Loss Without Class-Prior. Based on the lim-
itations of class-prior, our first remedy is to remove LCls

from LG, and therefore we have:

LG = �LAdv + �LRep. (3)

For LAdv and LRep, we first define their individual loss
functions, `adv(x̂) and `rep(x̂), respectively, for a synthetic
sample x̂. Then, LAdv and LRep are simply the expectations
of their individual losses over the generated samples.

For the adversarial loss `adv(x̂), in common with the re-
cent DFKD methods (Yin et al. 2020; Binici et al. 2022a;
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Figure 5: Overview of the proposed TA-DFKD method.

Patel, Mopuri, and Qiu 2023), we use the Jensen-Shannon
(JS) divergence JSD(·, ·) as follows:

`adv(x̂) = 1� JSD(✓T (x̂), ✓S(x̂)).

Minimizing `adv(x̂)maximizes the discrepancy between the
outputs of the teacher and student models with x̂, thereby
guiding the generator to produce more difficult samples.
To specify `rep(x̂), we adopt the BNS technique (Yin

et al. 2020), which matches the statistics of batch normaliza-
tion (BN) layers to make generated samples more realistic,
by the following definition:

`rep(x̂) = `bns(x̂) + �`var(x̂) + (1� �)`l2(x̂),

where `bns(x̂) is the sum of differences between the statis-
tics stored in BN layers of the teacher model when train-
ing real data, µl and �2

l , and those obtained by generated
samples in the teacher’s same layers, µl(x̂) and �2

l (x̂), as:
`bns(x̂) =

P
l(k µl(x̂) � µl k2 + k �2

l (x̂) � �2
l k2). As in

the original BNS technique (Yin et al. 2020), we also lever-
age additional regularization terms `var and `l2, which are
about total variance on pixel values within each image x̂ and
L2-norm of x̂, respectively.
By minimizing both LAdv and LRep, the generator can

effectively synthesize samples as diverse as possible and
mimic the feature-level summary of real data distribution by
matching BN statistics.

Quality Control via Sample Selection. Eliminating the
class-prior restriction could potentially lead to an even
higher risk of generating unexpectedly low-quality samples.
Furthermore, the adversarial loss itself has its own problems
that need to be addressed, such as the drastic change in the
distribution of generated samples, as highlighted by the re-
cent studies (Binici et al. 2022a; Patel, Mopuri, and Qiu
2023; Do et al. 2022). To address both issues, we propose
a simple yet effective approach: teacher-driven sample se-
lection, which takes only clean samples that are confidently
verified by the given teacher model. By doing so, from any
teacher models, we not only avoid distillation with erro-
neous samples, but also possibly mitigate drastic changes in
the sample distribution.

More specifically, for a generated sample x̂, we measure
the quality of x̂ by quantifying how confident the teacher
model is about its predicted label, denoted by yT (x̂). To
this end, we compute the cross-entropy loss between the
teacher’s output probability and its one-hot vector of the
predicted label as: `ce(✓T (x̂), yT (x̂)). This per-sample loss
value is then used to determine whether x̂ is reliable enough
in terms of its label distribution. Instead of making a deci-
sion by some absolute comparison, we specifically employ
the Gaussian Mixture Model (GMM), inspired by a method
of learning with noisy labels (Li, Socher, and Hoi 2020).
As illustrated in Figure 5(b), for each sample batch, the
GMM is built upon per-sample loss values, thereby form-
ing two Gaussian distribution components, namely Gsmall

and Gbig . The Gsmall component corresponds to the sam-
ples with smaller loss values, which thus are considered
to be high-quality samples, while the samples belonging
to Gbig are likely to be low-quality ones. To determine
whether to select x̂ or not, we compute its posterior proba-
bility Pr(Gsmall|`ce(✓T (x̂), yT (x̂))) and check if the prob-
ability exceeds a specified threshold ⌧ . This enables us to
define the following Boolean function �⌧ (x̂):

�⌧ (x̂) =

⇢
1 if Pr(Gsmall|`ce(✓T (x̂), yT (x̂))) > ⌧,
0 otherwise.

Finally, given a set of generated samples, we select only
the subset of samples with �⌧ (x̂) = 1 as:

{x̂ | x̂ = ✓G(z) s.t. z ⇠ pz(z) ^ �⌧ (x̂) = 1}.
Figure 6 demonstrates the effectiveness of our sample selec-
tion in DFKD. Before applying sample selection to the gen-
erator being trained with Eq. (3), we can still observe unex-
pectedly low-quality synthetic samples, as indicated by ⇥-
shaped points in Figure 6(a). However, they are effectively
removed from the result of Figure 6(b) after our sample se-
lection method is applied, and therein all the synthetic sam-
ples are properly located within their corresponding bound-
ary of real data samples. In our experiments, setting ⌧ to 0.5,
in the early stages of training, approximately 60% of sam-
ples are selected, but when approaching the end of training,
more than 90% of samples are selected.
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Figure 6: Visualization of before and after sample selec-
tion from real validation data and synthetic samples in the
teacher model ResNet-34 on CIFAR-10.

Overall Process of TA-DFKD. We now present the over-
all process of our teacher-agnostic data-free knowledge dis-
tillation (TA-DFKD) method, as illustrated in Figure 5(a).
When training the generator with our loss function in
Eq. (3), we use all the synthetic samples without sample se-
lection to compute LRep, as LRep is for learning feature-
level summary of real data distribution. On the other hand,
in terms of both LAdv and LKD, we train with only selected
samples by our selection method. Therefore, we accordingly
define the following two loss functions of Eq. (3):

LAdv = Ez⇠pz(z) ^ �⌧ (✓G(z))=1[`adv(✓G(z))], and
LRep = Ez⇠pz(z)[`rep(✓G(z))].

The final KD loss is similarly defined as:

LKD = Ez⇠pz(z) ^ �⌧ (✓G(z))=1 k ✓T (✓G(z))�✓S(✓G(z)) k1,

where we use the L1-distance between two outputs using
only selected synthetic samples.

Experiments
In this section, we validate our TA-DFKD method, with a
focus on its robustness and stability in DFKD using various
pretrained teacher models with the similar test performance.

Environment
Datasets and Compared Methods. We use three bench-
mark datasets, CIFAR-10/CIFAR-100 (Krizhevsky and Hin-
ton 2009) and TinyImageNet (Deng et al. 2009). The CI-
FAR datasets contain 60,000 RGB images of 32 ⇥ 32 over
either 10 or 100 classes, whereas Tiny-ImageNet consists of
100,000 images for 200 classes, 500 for each class, all of
which is the same size of 64⇥ 64. Using these datasets, we
compare TA-DFKD with multiple SOTA DFKD methods,
which are two fold. The first category includes DAFL (Chen
et al. 2019) and DFAD (Fang et al. 2019), which partially
mix out of the three loss terms, class-prior, adversarial,
and representation losses. For the second category, we test
CMI (Fang et al. 2021) as a representative one using the
BNS loss, and PRE-DFKD (Binici et al. 2022a) that alter-
natively uses activation maximization for the same purpose.
Except for CMI (Fang et al. 2021), which requires an addi-
tional training phase with pre-generated samples in memory,
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Figure 7: Box-plots of performance differences between
teacher and student in the CIFAR datasets.
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Figure 8: Differences between accmax and acclast[k] in the
CIFAR datasets.

all the compared methods are one-phase DFKD methods.
Due to the space limit, the results using TinyImageNet are
presented in the Appendix.

Training Details. For all datasets, we train ResNet-34 (He
et al. 2016) as the teacher model, ResNet-18 as the student
model, and DCGAN (Radford, Metz, and Chintala 2016) as
the generator. During training ResNet-34, multiple teacher
models with similar performance are randomly selected. In
the entire DFKD process, we train ResNet-18 along with
DCGAN for a particular number of epochs, 200 epochs
for CIFAR-10 and 500 epochs for CIFAR-100 and Tiny-
ImageNet. For compared methods, we follow the same con-
figuration of their implementations. Every measurement in
this section is taken out of 4 repeated runs.

Evaluation Metrics. In order to evaluate the robustness
and stability of each method, we not only measure the peak
accuracy accmax of each student model over all the repeated
runs but also introduce the converging accuracy acclast[k],
which is the average student accuracy over the last k
epochs of KD training for each run. Small differences be-
tween accmax and acclast[k] imply that the student model
shows stable and reasonably good performance during the
last phase of training. Furthermore, a small deviation of
acclast[k] out of all the repeated runs indicates a high level
of the robustness within a particular teacher model. We set
k to 10 for CIFAR-10 and 20 for the other datasets.

Experimental Results
Performance Comparison. Table 3 presents the summa-
rized result of performance comparison of TA-DFKD with
the SOTA DFKD methods, using five different teacher mod-
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CIFAR-10 Teacher: ResNet-34 Student: ResNet-18 (Accuracy with real data: 95.2 %)

Method Teacher 1 (95.46%) Teacher 2 (93.46%) Teacher 3 (92.01%) Teacher 4 (94.43%) Teacher 5 (91.36%)
acclast[10] accmax acclast[10] accmax acclast[10] accmax acclast[10] accmax acclast[10] accmax

DAFL 83.60±7.8 92.07 85.94±2.0 88.43 68.87±20.0 88.08 89.21±4.6 92.90 72.85±10.9 85.59
DFAD 93.23±0.1 93.60 87.72±0.2 88.69 87.83±0.1 88.77 92.27±0.1 92.82 87.66±0.2 89.22
CMI 92.54±1.6 94.80 89.84±0.1 90.16 89.40±0.1 89.81 93.26±0.1 93.61 89.62±0.1 90.37
PRE-DFKD 89.22±4.9 94.10 85.16±0.3 86.59 80.55±0.6 83.15 90.80±0.3 91.56 83.93±1.6 88.05
TA-DFKD 94.24±0.1 94.43 91.99±0.1 92.15 90.21±0.1 90.69 93.61±0.0 93.79 90.27±0.1 91.08

CIFAR-100 Teacher: ResNet-34 Student: ResNet-18 (Accuracy with real data: 77.1 %)

Method Teacher 1 (77.98%) Teacher 2 (75.01%) Teacher 3 (76.01%) Teacher 4 (78.42%) Teacher 5 (77.04%)
acclast[20] accmax acclast[20] accmax acclast[20] accmax acclast[20] accmax acclast[20] accmax

DAFL 74.08±0.6 75.22 70.31±0.4 71.27 72.22±1.0 73.73 73.96±0.5 74.82 74.66±0.4 75.32
DFAD 69.51±0.3 70.03 66.31±0.1 66.75 71.55±0.2 71.97 69.61±0.3 70.26 70.33±0.4 71.33
CMI 74.10±0.2 74.85 71.81±0.1 72.43 73.55±0.1 74.03 74.40±0.1 77.00 74.18±0.1 74.77
PRE-DFKD 76.13±0.2 76.57 73.11±0.2 73.53 74.75±0.4 75.44 75.58±1.1 77.10 75.37±0.6 76.01
TA-DFKD 76.55±0.1 76.76 73.61±0.1 73.89 75.74±0.1 76.02 76.73±0.1 76.99 76.58±0.1 76.84

Table 3: DFKD performance comparison using 5 teacher models trained on CIFAR-10 (top) and CIFAR-100 (bottom).

els trained on the CIFAR-10 and CIFAR-100 datasets. It
is clearly observed that TA-DFKD manages to achieve the
highest peak accuracy accmax as well as the highest con-
verging accuracy acclast[k] in most of the cases. Over all the
repeated runs, TA-DFKD shows only small variations in its
converging accuracy, implying high robustness within each
teacher model. On the other hand, DAFL sometimes expe-
riences a catastrophic failure of distillation with a large de-
viation even with the same teacher model (e.g., ± 20.02 in
Teacher 3 on CIFAR-10), aligning with the example of Fig-
ure 1(a). This failure is likely to happen when the generator
gets collapsed into only a few easy samples at some point
of training. Recent methods utilizing all the three loss terms,
CMI and PRE-DFKD, generally perform better than those
of not using all the terms, DAFL and DFAD. However, both
CMI and PRE-DFKD do not show the reliable performance
across the two datasets in that either of them interchangeably
takes the second best position in different datasets.

Teacher-Agnostic Behavior. Based on the results of Ta-
ble 3, we examine how robust and stable the performance
of each method remains when using different teacher mod-
els, as plotted in Figures 7 and 8. Figure 7 shows box-
plots on performance gaps in peak accuracies between the
teacher and student models. In both CIFAR-10 and CIFAR-
100, the proposed TA-DFKD shows short box-plots imply-
ing the teacher-agnostic robustness, while the other com-
pared methods have relatively long ranges of performance
gaps throughout different teacher models. Figure 8 demon-
strates the teacher-agnostic stability by plotting differences
between accmax and acclast[k] using five teacher models.
TA-DFKD clearly takes the bottom-most position in both
graphs of the CIFAR datasets, meaning that its performance
becomes quite stable and remains almost the same as its best
accuracy once it reaches the last phase of distillation process.

Ablation Study. Table 4 shows the result of an ablation
study to verify the effectiveness of elimination of class-prior

Method T1 T2 T3 T4 T5
77.98 75.01 76.01 78.42 77.04

Baseline 73.67 71.09 74.22 73.14 76.08
w/o LCls 73.96 71.23 74.43 76.08 76.67
TA-DFKD 76.76 73.89 76.02 76.99 76.84

Table 4: Ablation study showing peak accuracies on CIFAR-
100, where (1) baseline is the standard DFKD framework
involving all the three loss terms, (2) w/o class-prior is the
method removing class-prior from the standard framework,
and (3) TA-DFKD is our final version additionally applying
teacher-driven sample selection.

and applying sample selection, using the five teacher models
on CIFAR-100. The baseline methods use all the three loss
terms, LCls, LRep, and LAdv , without any sample selection.
The result clearly confirms our two arguments: (1) class-
prior is better to be removed, but (2) removing class-prior
is not sufficient to further improve the performance without
controlling sample quality by our sample selection method.

Conclusion
This paper has conducted the first study on teacher-agnostic
DFKD, with a focus on three loss terms commonly adopted
in DFKD methodologies. Our findings strongly suggest that
by replacing the class-prior restriction with our sample se-
lection scheme, we can achieve enhanced quality control,
thus leading us to propose the TA-DFKD method. In our ex-
periments, TA-DFKD has demonstrated remarkable robust-
ness and stability across various teacher models. We believe
that our work offers a practical solution for knowledge distil-
lation scenarios without access to prior data samples, and it
is our hope that this work marks the initiation of the problem
of teacher-agnostic DFKD, providing a promising direction
for further research in the field.
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